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Abstract

The traditional finite difference method has been widely used to calculate two-dimensional electrical conditions in

the wire–plate electrostatic precipitation and the calculation domain has to be confined in the first quadrant of single

discharge electrode on the base of the symmetry assumption. In order to remove the symmetry assumption, an un-

conditional convergent numerical method, in which the upwind (or downwind) scheme was used for the positive (or

negative) corona, is presented to calculate the three-dimensional distributions of the electric potential and the space

charge in a wire–plate electrostatic precipitator. And the predicted electric potentials agree well with existing experi-

mental data.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The electrostatic precipitator (ESP) is a commonly used device for removing particulates from gas-

particulates mixtures exhausted by various industrial processes. The most commonly used electrostatic
precipitators are the wire–plate form as shown in Fig. 1. A series of equally spaced vertical corona wires are

placed between two vertical parallel plates. The flat plates are grounded and the corona wires are at a high

voltage. The corona discharge at these wires causes ions to traverse the interelectrode space to charge dust

particles. The charged particles move toward the grounded plates under the influence of the electric field

and are deposited on the plates. In the process of particle collection in an electrostatic precipitator, the

particle motion is affected by both the electrostatic field and the gas flow.
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Fig. 1. Schematic of wire–plate electrostatic precipitator.
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The electric-field distribution in the ESP is of prime importance for increasing the performance and

optimizing the operating conditions of industrial ESP. The electric conditions inside the ESP are deter-

mined by the strongly coupled applied electric field and corona-generated space charge (in the absence of

particle), and can be described by the steady-state Maxwell equations and a constitutive law relating current

and voltage. Assuming that the magnetic field caused by the corona current is negligibly small, the

equations defining the electrostatic field in general are

r � ðe0~EEÞ ¼ q; ð1Þ
r �~jj ¼ 0; ð2Þ

where

~EE ¼ �rV ð3Þ

and

~jj ¼ qb~EE; ð4Þ

where e0 is the permittivity of free space, ~EE is the electric-field strength, q is the space-charge density,~jj is the
current density, V is the electric potential, and b is the ion mobility.

Eq. (3) can be used with Eq. (1) to obtain the Poisson equation for the electric potential:

e0r2V ¼ �q: ð5Þ

Substituting Eqs. (1), (3) and (4) into Eq. (2), the special form of the current continuity equation involving

V and q is generated:

r �~jj ¼ r � ðqb~EEÞ ¼ qbr �~EE þ b~EE � rqþ q~EE � rb ¼ qbðq=e0Þ þ bð�rV Þ � rqþ qð�rV Þ � rb ¼ 0:

ð6Þ
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In this work, b is a const., that is rb ¼ 0. Therefore, Eq. (6) can be expressed as follows:

e0rV � rq ¼ q2: ð7Þ

The traditional finite difference method (FDM), described in the following section, has been widely used

to solve the Poisson equation (5) and the current continuity equation (7) [1,2]. However, all these authors
used two-dimensional, symmetric domains [1–8], but did not investigate if these assumptions were rea-

sonable. Nor did they consider why the calculation domain had to be the first quadrant of single discharge

electrode or why the forward difference scheme could not be applied to get the space-charge density

gradient in the traditional FDM.

Because the electrical equations are analogous to the equations used to describe fluid flow, the downwind

scheme, which is customarily used to treat the fluid dynamics problems [9], is introduced in this paper to

solve the current continuity equation in the case of positive corona, and the relevant upwind scheme is used

in the case of negative corona. As a consequence, the symmetry assumptions can be removed, and the
governing equation can be solved to describe the three-dimensional unsymmetrical electrical conditions in

the whole ESP in an unconditionally convergent way. In this method, the semi-empirical expression pro-

posed by Peek [10] is introduced to describe the space-charge density near the corona wire, and the first-

order upwind (or downwind) scheme is applied to the current continuity equation, and the second-order

central differential scheme is applied to the Poisson�s equation for electric potential.

In the rest of this paper, we analyze the reason why the traditional FDM only converges in the first

quadrant of single discharge electrode and gives the numerical method suitable for obtaining a convergence

solution in the other quadrants (Section 2). Based on an analogy between the electric equation and the fluid
dynamics equation, we propose a numerical method to solve the Poisson�s equation for electric potential

and the current continuity equation and prove the convergence of this method. Finally, we will perform

numerical computations and compare the predicted result with the experimental data (Section 3).
2. Traditional finite difference method and its limitation

In the traditional FDM, the central difference scheme is used for the electric potential and the backward
difference scheme is used for the gradient of the space-charge density [1–8] as follows:

Ex ¼ � oV
ox

¼ VW � VE
ðdxÞe þ ðdxÞw

; Ey ¼ � oV
oy

¼ VS � VN
ðdyÞn þ ðdyÞs

;

oq
ox

����
�1=2

¼ qP � qW

ðdxÞw
;

oq
oy

����
�1=2

¼ qP � qS

ðdyÞs
;

where dx and dy are mesh sizes in x and y, respectively. The geometry is shown in Fig. 2. For the simplest

condition, the computational domain can be divided into four zones, as shown in Fig. 3.

Now we explain the reason why the traditional FDM complies with the physical fact in the zone I. If the

backward difference scheme is used for the gradient of the space-charge density, the space charge at grid
point P is determined by the information at the neighbors W and S, not at the other neighbors E and N .

Thus, the grid point in the upstream side should provide the full information for the grid point in the

downstream in this scheme. Here, the upstream side and the downstream side are based on the direction of

the coordinate system. This requires the space charges to move in the positive direction of the coordinate

system. For the positive corona, the direction of the electric-field strength and the positive direction of the

coordinate system are the same in domain I, so the traditional FDM complies with the physical rule that the
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Fig. 3. Convergence domain for traditional finite difference method: +1/2 forward difference scheme; +1/2 downward difference scheme.

Fig. 2. Control volume for the two-dimensional geometry.
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positive charges move in the direction of the electric-field strength. Thus, the converged numerical solution

can be obtained by the traditional FDM in domain I.

However, in order to comply with the physical rules in zone III, the space charge at grid point P should

be determined by that at the neighbors E and N , so it conflicts with the backward difference scheme. Such a
conflict also occurs in zones II and IV.

If we want to obtain the converged solution in zone II, III or IV, the corresponding difference scheme for

the gradient of the space charge density should be defined as follows:

Zone II. Forward difference scheme for oq=ox , and backward difference scheme for oq=oy.
Zone III. Forward difference scheme for oq=ox, and forward difference scheme for oq=oy.
Zone IV. Backward difference scheme for oq=ox, and forward difference scheme for oq=oy.
For the negative corona, the direction of the electric field is opposite to that of the positive corona, and

the negative charges move in the opposite direction of the electric-field strength. Therefore, the direction of
the charge motion is the same in the same domain independent of the corona charge. On this condition, the

backward difference scheme can still be successfully applied to domain I, and the forward difference scheme

can also be successfully applied to domain III. Schemes for the gradient of the space-charge density that

ensure relative convergent calculations in all the domains are shown in Fig. 3.

In conclusion, the traditional FDM does not follow the directions of the electric-field strength in all

zones so that its applications are limited.
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3. Control-volume method and numerical experiment

We make an analogy between the fluid flow problem and the electric-field problem in order to apply the

well-established numerical approach for fluid flow to the present problem of electric field. Consider a steady

and incompressible flow governed by the continuity equation, the momentum balance equation and the

energy equation which can be uniformly written as

qf~uuf � rð/Þ þ r � ðCr/Þ ¼ S ð8Þ

where qf is the fluid density,~uuf is the fluid velocity, C is the diffusion coefficient. The terms and coefficients
in this expression depend on the dependent variable, /. The three terms in the general differential equation

are the convection term, the diffusion term and the source term, S. In order to compare with Eq. (8), we

rewrite Eqs. (5) and (7) as

r � ðe0rV Þ ¼ �q; ð9Þ
e0~EE � rq ¼ �q2: ð10Þ

The Poisson�s equation for the electric-potential equation (9) has a diffusion term and a source term, and

the current continuity equation (10) has a convection term and a source term. Therefore, we can apply the

control-volume method, which is widely applied in the computational fluid dynamics, to the calculation of

the distributions of the electric potential and the space charge in the ESP.

3.1. Poisson’s equation for electric potential

Using the standard method for the discretization of the diffusion term and the source term, the derivative

rV in Eq. (9) can be evaluated from a piecewise-linear profile, with the integrated equation over the control
volume shown in Fig. 2 being defined by

VE � VP
DxðdxÞe

� VP � VW
DxðdxÞw

þ VN � VP
DyðdyÞn

� VP � VS
DyðdyÞs

þ VT � VP
DzðdzÞt

� VP � VB
DzðdzÞb

¼ �qP=e0; ð11Þ

where qP is the average space volume charge density in the control volume, P . The discretization equation

(11) can be cast into the following form:

aPVP ¼ aEVE þ aW VW þ aNVN þ aSVS þ aT VT þ aBVB þ b; ð12Þ

where

aE ¼ 1

DxðdxÞe
; aW ¼ 1

DxðdxÞw
; aN ¼ 1

DyðdyÞn
; aS ¼

1

DyðdyÞs
; aT ¼ 1

DzðdzÞt
; aB ¼ 1

DzðdzÞb
;

aP ¼ aE þ aW þ aN þ aS þ aT þ aB; b ¼ qP=e0:
3.2. Current continuity equation

The current continuity equation does not have a diffusion term, so the current continuity equation is

parabolic. Namely, the charge motion is unidirectional with the positive charges moving from upstream to

downstream and the negative charges moving from downstream to upstream. Here, the upstream side

and the downstream side are based on the direction of the electric field. For the positive charge, the
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space-charge density at each point is affected by the upstream conditions. Therefore, the upwind scheme

can be applied to describe the space-charge distribution for the positive corona. The forward and backward

difference schemes for the electric potential, V , were used to calculate the electric-field strength, ~EE, across
the control-volume faces as shown in Fig. 2.

Integration of Eq. (10) over the control volume gives

ðExÞeAeqe � ðExÞwAwqw þ ðEyÞnAnqn � ðEyÞsAsqs þ ðEzÞtAtqt � ðEzÞbAbqb ¼ �q2
PDv=e0; ð13Þ

where qi ði ¼ e;w; n; s; t; bÞ represents the value of q at the control-volume face, Ai is the area of the control-

volume face, and Dv ¼ DxDyDz is the volume of the control volume P .
As a result, the space-charge density at a grid point should be determined by the direction of the electric

field and the sign of the space charge. For the positive corona, the direction of the electric-field strength and

the positive ion motion are the same. Thus, the upwind scheme should be applied to assure that the space-
charge density at the interface is equal to that of the grid point on the upstream side.

Thus,

qe ¼
qP if ðExÞe > 0;
qE if ðExÞe < 0:

�

The values of qw, qn, qs, qt and qb are defined similarly. Then, Eq. (13) can be rewritten as

aPqP ¼ aEqE þ aW qW þ aNqN þ aSqS þ aTqT þ aBqB þ b; ð14Þ
where

aE ¼ max½�ðExÞeAe; 0�; aW ¼ max½ðExÞwAw; 0�; aN ¼ max½�ðEyÞnAn; 0�;

aS ¼ max½ðEyÞsAs; 0�; aT ¼ max½�ðEzÞtAt; 0�; aB ¼ max½ðEzÞbAb; 0�;

aP ¼ aE þ aW þ aN þ aS þ aT þ aB þ ½ðExÞeAe � ðExÞwAw þ ðEyÞnAn � ðEyÞsAs þ ðEzÞtAt � ðEzÞbAb�;

b ¼ �q2
PDV =e0:

However, for the negative corona, the direction of the electric-field strength is opposite to that of the
negative charge motion. Thus, the downwind scheme should be applied to assure that the space-charge

density at the interface is equal to that of the grid point on the downstream side.

Thus,

qe ¼
qE if ðExÞe > 0;
qP if ðExÞe < 0:

�

The values of qw, qn, qs, qt and qb are defined similarly. Then, Eq. (13) can be rewritten as

aPqP ¼ aEqE þ aW qW þ aNqN þ aSqS þ aTqT þ aBqB þ b; ð15Þ
where

aE ¼ max½ðExÞeAe; 0�; aW ¼ max½�ðExÞwAw; 0�; aN ¼ max½ðEyÞnAn; 0�;
aS ¼ max½�ðEyÞsAs; 0�; aT ¼ max½ðEzÞtAt; 0�; aB ¼ max½�ðEzÞbAb; 0�;

aP ¼ aE þ aW þ aN þ aS þ aT þ aB � ½ðExÞeAe � ðExÞwAw þ ðEyÞnAn � ðEyÞsAs þ ðEzÞtAt � ðEzÞbAb�;
b ¼ q2
PDV =e0:
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3.3. Convergence

The algorithm will converge if it satisfies the following three basic rules [9].

(1) When a face is common to two adjacent control volumes, the flux across it must be represented by the

same expression in the discretization equations for the two control volumes.

(2) The coefficient aP at the grid point P and the neighbor coefficients anb ðnb ¼ E;W ;N ; S; T ;BÞ must

always be positive.

(3) The coefficient at the grid point P must be always equal to or greater than the sum of the neighbor

coefficients (E;W ;N ; S; T ;B).
Clearly, the discretized Poisson�s equation for the electric potential, Eq. (12), satisfies the above three

basic rules and the discretized equations for the current continuity equation, Eqs. (14) and (15) satisfy the

rules (1) and (2).

Now let us show that Eqs. (14) and (15) also satisfy the rule (3). For this purpose, were write Eq. (9) as

r �~EE ¼ q=e0. Integration over the control volume gives

ðExÞeAe � ðExÞwAw þ ðEyÞnAn � ðEyÞsAs þ ðEzÞtAt � ðEzÞbAb ¼ qPDV =e0: ð16Þ

For the positive corona, q > 0, we have

ðExÞeAe � ðExÞwAw þ ðEyÞnAn � ðEyÞsAs þ ðEzÞtAt � ðEzÞbAb > 0: ð17Þ

For the negative corona, q < 0, we obtain

�½ðExÞeAe � ðExÞwAw þ ðEyÞnAn � ðEyÞsAs þ ðEzÞtAt � ðEzÞbAb� ¼ ð�qP ÞDV =e0 > 0: ð18Þ

Hence, aP is always greater than aE þ aW þ aN þ aS þ aT þ aB; for both positive and negative coronas, so

Eqs. (14) and (15) always satisfy the third rule.

3.4. Boundary conditions and convergence criteria

The boundary conditions used in this calculation are summarized in Table 1. According to the semi-

empirical formula by Peek [10], the space-charge density near the wire, qW , can be given by:

qW ¼ l0jP
pbrf ½30dþ 0:9ðd=rÞ1=2�

� 10�5; ð19Þ

where l0 is the wire–wire spacing, jP is the average current density at the grounded plate, r is the corona wire
radius, f is the roughness factor of the corona wire, d is T0P=TP0, T0 is 293 K, P0 is 1.01� 105 Pa, and P and

T are the operating pressure and temperature [2,3]. The calculational domain was discretized using a

nonuniform grid of 146 (longitudinal)� 13 (vertical)� 52 (traverse) elements with a densely packed grid

near the corona wire to represent the strong gradient of the electric field as shown in Fig. 4. The discretized
equations for V and q were solved using the tri-diagonal matrix algorithm coupled with the Gauss–Siedel

routine. In order to avoid divergence in the iterative solution, underrelaxation was employed.
Table 1

Boundary conditions

Grounded plate Corona wire Side face, top, bottom

Electric potential V ¼ 0 V ¼ �46:2 kV oV =on ¼ 0

Space-charge density oq=on ¼ 0 q ¼ qW oq=on ¼ 0



Fig. 4. Computational mesh.
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The numerical solution of Eqs. (9) and (10) was performed in the following sequences.
1. Solve Eq. (9) with an initial guess of free space charge.

2. Apply the upwind (or downwind) scheme for the positive (or negative) corona.

3. Assume the space-charge density at the corona wire.

4. Calculate the electric field from Eq. (3).

5. Calculate the current continuity equation (10).

6. Calculate the Poisson equation for the electric potential.

7. Return to step (4) and repeat until convergence.

The convergence criteria are

max
V �ðKþ1Þ � V �ðKÞ

V �ðKþ1Þ

����
���� < 10�6; ð20Þ
max
q�ðKþ1Þ � q�ðKÞ

q�ðKþ1Þ

����
���� < 2� 10�5; ð21Þ

where K is the iteration number.

The program was compiled by Fortran 77, and run on a PC1.8G/256M. About 500 over all iterations
were required to attain the bounds in Eqs. (21) and (22), and 10 iterations were required to solve Poisson

equation in each overall iteration.

3.5. Numerical experiments

The computational results were compared with the experimental data of Penny and Matick [11]. Their

experimental conditions are summarized in Table 2. The electric mobility of gas ions, b, was assumed to be

1.8� 10�4 m2 V�1 s�1, which is typical for a negative corona [2,3].



Table 2

Experimental conditions

Wire-to-wire spacing l0 ¼ 152:4 mm Plate-to-plate space s ¼ 228:6 mm

Wire length h ¼ 609:6 mm Plate length l ¼ 609:6 mm

Wire radius r ¼ 1 mm
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Fig. 5. Comparisons of the predicted electric potential with published experimental data.
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Fig. 6. Spatial distribution of electric potential in the wire–plate ESP: (a) horizontal distribution at the central plane and (b) vertical

distribution at the central plane.
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Fig. 7. Spatial distribution of space-charge density in the wire–plate ESP: (a) horizontal distribution at the central plane and (b)

vertical distribution at the central plane.

706 H. Lei et al. / Journal of Computational Physics 193 (2004) 697–707
Fig. 5 shows that the predicted voltage distribution agreed well with the experimental data [11]. The

maximum relative error was about 12% because the data in [11] could not be measured exactly. The electric

potentials shown on the curve, as with all the electric potentials in this paper were negative, but were not

designated as such.

Figs. 6 and 7 show the three-dimensional distributions of the electric potential and the space-charge

density.The horizontal distributions for the electric potential and the space-charge density have an annular

shape, with the corona wires being located at the center of the annulus. The influences of the inlet and outlet
were not great, as shown in Fig. 7(a), therefore, periodic boundary conditions were applied as an ap-

proximation. Fig. 7(b) shows that all the isometric lines for the electric potential and the space-charge

density were parallel to the corona wire. So, along the direction of the corona wire, the distributions of the

electric potential and the space charge are the same, therefore, the distributions of the electric potential and

the space charge in the wire–plate electrostatic precipitator can be analyzed as two-dimensional.
4. Conclusion

The electrical condition in an electrostatic precipitator is a three-dimensional unsymmetrical problem,

but the traditional FDM is based on the two-dimensional symmetrical assumption. Thus, an unconditional

convergent numerical method is presented here to solve the three-dimensional unsymmetrical problem. The

present method complies with the physical facts that the positive charges move in the direction of the

electric-field strength and the negative charges move in the opposite direction of the electric-field strength,

so it can be applied without knowing the electric-field direction a priori by using the upwind (or downwind)

scheme for the positive (or negative) corona. Comparisons of the predicted electric potential with existing
experimental data indicated that the numerical method could be used to design electrostatic precipitators

with the wire–plate geometry.
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